МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ Первый заместитель Министра Д.Л.Пиневич 2019 г. Регистрационный № 051-0419

МЕТОД ОПРЕДЕЛЕНИЯ СИКВЕНС-ТИПОВ И КЛОНАЛЬНЫХ КОМПЛЕКСОВ ИНВАЗИВНЫХ N. MENINGITIDIS И S. PNEUMONIAE

(инструкция по применению)

УЧРЕЖДЕНИЕ-РАЗРАБОТЧИК: государственное учреждение «Республиканский научно-практический центр эпидемиологии и микробиологии»

АВТОРЫ: д-р мед. наук, профессор, член-корреспондент НАН Беларуси Титов Л.П., Хархаль А.Н.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ Первый заместитель Министра _____ Д.Л.Пиневич 25.04.2019 Регистрационный № 051-0419

МЕТОД ОПРЕДЕЛЕНИЯ СИКВЕНС-ТИПОВ И КЛОНАЛЬНЫХ КОМПЛЕКСОВ ИНВАЗИВНЫХ *N. MENINGITIDIS* И *S. PNEUMONIAE*

(инструкция по применению)

УЧРЕЖДЕНИЕ-РАЗРАБОТЧИК: государственное учреждение «Республиканский научно-практический центр эпидемиологии и микробиологии»

АВТОРЫ: д-р мед. наук, профессор, член-корреспондент НАН Беларуси Титов Л.П., Хархаль А.Н.

В настоящей инструкции по применению (далее – инструкция) изложен метод определения сиквенс-типов (СТ) и клональных комплексов (КК) инвазивных *N. meningitidis* и *S. Pneumoniae*, который может быть использован в комплексе медицинских услуг, направленных на диагностику и медицинскую профилактику заболеваний, вызванных названными микроорганизмами.

Мультилокусное сиквенс-типирование (МЛСТ) менингококков современная технология, базирующаяся пневмококков это на секвенировании высоко консервативных внутренних фрагментов семи генов домашнего хозяйства $(\Gamma \Pi X)$, которые экспрессируются на всех клеточного цикла, uшироко применяемая эпидемиологического надзора в качестве «золотого стандарта» для мониторинга популяции микроорганизма на конкретной территории, планирования и проведения эффективных мероприятий по профилактике инфекционных заболеваний и бактерионосительства.

Инструкция предназначена для врачей лабораторной диагностики, врачей-бактериологов, врачей-эпидемиологов, иных врачей-специалистов организаций здравоохранения, оказывающих медицинскую помощь пациентам в стационарных и (или) амбулаторных условиях, и (или) в условиях отделения дневного пребывания, и (или) осуществляющих государственный санитарный надзор.

Показания к применению

Менингококковая инфекция (МКБ10 – A39); пневмококковая инфекция (A40).

Противопоказания к применению: отсутствуют.

Перечень необходимых медицинских изделий, реагентов, расходных материалов и др.

Таблица 1-Изделия медицинской техники для проведения секвенирования

Экстракция ДНК		
ПЦР-бокс		
Микроцентрифуга для пробирок типа «Эппендорф» (10 000-15 000xg)		
Термостат твердотельный для микропробирок на 1,5 мл и 0,5 мл		
(диапазон рабочих температур от +25°C до+99°C)		
Микроцентрифуга-вортекс		
Комплект пипеточных дозаторов (0,5-10 мкл; 20-200 мкл; 200-1000 мкл)		
Холодильник, диапазон рабочих температур от +2°C до +4°C		
Морозильная камера, диапазон рабочих температур от -16°C до -20°C		
Бактерицидная УФ-лампа		
Проведение ПЦР-реакции		
ПЦР-бокс		
Термоциклер для проведения ПЦР		

Микроцентрифуга-вортекс
Бактерицидная УФ-лампа
Комплект пипеточных дозаторов (0,5-10 мкл; 20-200 мкл)
Холодильник, диапазон рабочих температур от +2°C до +4°C
Морозильная камера, диапазон рабочих температур от -16°C до -20°C
Проведение электрофоретической детекции
Микроцентрифуга-вортекс
Комплект пипеточных дозаторов (0,5-10 мкл; 20-200 мкл)
Холодильник, диапазон рабочих температур от +2°C до +4°C
Морозильная камера, диапазон рабочих температур от -16°C до -20°C
Система для проведения горизонтального гель-электрофореза
Источник постоянного тока для электрофореза
УФ-трансиллюминатор
Бактерицидная УФ-лампа
Очистка продуктов реакции циклического секвенирования
Комплект пипеточных дозаторов (0,5-10 мкл; 20-200 мкл)
Микроцентрифуга-вортекс
Морозильная камера, диапазон рабочих температур от -16°C до -20°C
Микроцентрифуга для пробирок типа «Эппендорф» (10 000-17 000хg)
Секвенирование
Секвенатор ДНК

Выделение ДНК		
Набор реагентов для выделения ДНК из биологического материала		
Набор реагентов для выделения ДНК из культур микроорганизмов		
Набор реагентов для выделения ДНК из агарозного геля		
Проведение ПЦР-реакции		
Набор реагентов для проведения ПЦР		
ДНК-полимераза с буфером		
Pacтвор MgCl ₂ (25 мМ)		
Смесь дНТФ (10 мМ)		
Олигонуклеотидные праймеры 20 пМ		
Вода стерильная бидистиллированная свободная от нуклеаз		
Набор реагентов для реакции циклического секвенирования		
Проведение электрофоретической детекции		
Агароза для электрофореза		
Маркер молекулярного веса (от 100 п.о., 1000 п.о.)		
ТАЕ-буфер		
Бромистый этидий		

Очистка продуктов реакции циклического секвенирования		
Этанол медицинский 96,6%		
Этанол медицинский 70%		
Ацетат натрия (3М)		
ЭДТА (125 mM)		
Формамид		
Проведение секвенирования		
Набор реагентов в соответствии с инструкцией производителя		
секвенатора		

Технология осуществления метода

Материалом для исследования являются ДНК менингококков и пневмококков, выделенных из чистых культур бактерий или биологического материала.

1) Экстракция ДНК менингококков и пневмококков

Выделение тотальной ДНК проводят с использованием коммерческого набора, предназначенного для выделения ДНК из биологического материала (СМЖ, кровь, мазки носоглотки и т.д.) или из чистых культур микроорганизмов. Выделенные образцы ДНК хранят при -20°С не более 1 года. Допускается хранение биологического материала при -70°С не более 1 года для повторного выделения ДНК.

2) ПЦР для амплификации генов «домашнего хозяйства»

используемые для MLST: (ABCменингококков, abcZпереносчик), adk (аденилатциклаза), aroE (шикимат дегидрогеназа), fumC(фумаратгидратаза), (глюкозо-6-фосфат дегидрогеназа), gdh (субъединица пируват-дегидрогеназы) и рдм (фосфоглюкомутаза). ГДХ пневмококков, используемые для МЛСТ: *aroE* (шикимат дегидрогеназа), (глюкозо-6-фосфат дегидрогеназа), gki (глюкокиназа), recP(транскетолаза), (сигнальная пептидаза), spi xpt (ксантин фосфорибозилтрансфераза), *ddl* (D-аланин-D-аланин лигаза).

Последовательности праймеров представлены в таблице 3. Объем смеси для амплификации генов «домашнего хозяйства» составляет 25 мкл (таблица 4).

Таблица 3 — Праймеры для амплификации ГДХ менингококков и пневмококков

Ген	Последовательность, 5′ - 3′	Размер
		ампликона
	Гены «домашнего хозяйства» менингококков	
abcZ	F: TGTTCCGCTTCGACTGCCAAC	422 7 0
	F: TGTTCCGCTTCGACTGCCAAC R: TCCCCGTCGTAAAAAACAATC	433 п.о.
adk	F: CCAAGCCGTGTAGAATCGTAAACC	465 п.о.

	R: TGCCCAATGCGCCCAATAC		
aroE	F: TTTGAAACAGGCGGTTGCGG	400 = 0	
	R: CAGCGGTAATCCAGTGCGAC	490 п.о.	
fumC	F: TCCCCGCCGTAAAAGCCCTG	465 п.о.	
	R: GCCCGTCAGCAAGCCCAAC	403 11.0.	
~ J1.	F: CTGCCCCGGGGTTTTCATCT	501 п.о.	
gdh	R: TGTTGCGCGTTATTTCAAAGAAGG	301 11.0.	
ndhC	F: CCGGCCGTACGACGCTGAAC	480 п.о.	
pdhC	R: GATGTCGGAATGGGGCAAACA	460 11.0.	
nam	F: CTTCAAAGCCTACGACATCCG	450 п.о.	
pgm	R: CGGATTGCTTTCGATGACGGC	430 11.0.	
	Гены «домашнего хозяйства» пневмококков		
	F: TCCTATTAAGCATTCTATTTCTCCCTTC		
aroE	R: ACAGGAGAGGATTGGCCATCCATGCCC	405 п.о.	
	ACACTG		
adh	F: ATGGACAAACCAGCNAGYTT	460 п.о.	
gdh	R: GCTTGAGGTCCCATRCTNCC	400 11.0.	
aki	F: GGCATTGGAATGGGATCACC	483 п.о.	
gki	R: TCTCCCGCAGCTGACAC	465 11.0.	
	F: GAATGTGTGATTCAATAATCACC		
recP	TCAAATAGAAGG	450 п.о.	
reci	R: TGCTGTTTCGATAGCAGCATGGA	430 11.0.	
	TGGCTTCC		
spi	F: TTATTCCTCCTGATTCTGTC	474 п.о.	
	R: GTGATTGGCCAGAAGCGGAA	4/4 11.0.	
xpt	F: TTAACTTTTAGACTTTAGGAGGTCTTATG	486 п.о.	
	R: CGGCTGCTTGCGAGTGTTTTTCTTGAG	400 11.0.	
ddl	F: TAAAATCACGACTAAGCGTGTTCTGG	441 п.о.	
	R: AAGTAGTGGGTACATAGACCACTGGG	441 11.0.	

Таблица 4 – Компоненты реакционной смеси ПЦР

Компонент	Необходимое количество на одну ПЦР-реакцию
Вода для ПЦР	до 25 мкл
Буфер для ДНК-полимеразы (10х)	2,5 мкл
Pacтвор MgCl ₂ (25 мМ)	3 мкл
Смесь дНТФ (10 мМ)	0,5 мкл
Прямой праймер (F) (20 мМ)	0,25
Обратный праймер(R) (20 мМ)	0,25
ДНК-полимераза (5ЕД/мкл)	0,2 мкл
Образец ДНК	2-5 мкл

Амплификация проводится в автоматическом режиме по заданным программам, представленным в таблице 5.

Таблица 5 — Условия амплификации фрагментов ГДХ менингококков и пневмококков

Гены	Шаг	Температура	Время
ГДХ	денатурация	94°C	4 мин.
менингококков	35 циклов	95°C	25 сек.
		62°C	35 сек.
		72°C	55 сек.
	элонгация	72°C	1 мин.
ГДХ	денатурация	94°C	5 мин.
пневмококков	30 циклов	95°C	15 сек.
		54°C	30 сек.
		72°C	45 сек.
	элонгация	72°C	10 мин.

Анализ продуктов амплификации осуществляют методом электрофореза в 1,5% агарозном геле с последующим окрашиванием бромистым этидием (0,5 мг/мл) и детекцией в ультрафиолетовом трансиллюминаторе (312 нм). Образец аккуратно вырезают из геля и выделяют ДНК коммерческим набором для выделения ДНК из агарозного геля в соответствии с инструкцией производителя.

3) Реакция циклического секвенирования

Реакция циклического секвенирования проводится с применением наборов, разработанных коммерческих ДЛЯ использования соответствующей модели секвенатора. В реакции используется только один праймер. Необходимо проводить две реакции: с прямым и с обратным праймером, последовательности которых представлены Постановку реакции таблице 4. осуществляют соответствии В инструкцией к используемому набору.

4) Очистка продуктов реакции циклического секвенирования

Очистка продуктов реакции циклического секвенирования проводится методом переосаждения, который включает следующие этапы:

- приготовление осаждающей смеси (50 мкл 96,6% этанола, 2 мкл 3М ацетата натрия, 2 мкл 125 mM ЭДТА);
- внесение в осаждающую смесь 10 мкл полученного продукта реакции циклического секвенирования;
- интенсивное перемешивание содержимое пробирок и инкубация 10 минут при комнатной температуре;
 - центрифугирование 15 минут при 17 000g;

- плавно удаляется надосадочная жидкость, вносится 70 мкл 70% ледяного этанола;
 - инкубация 15-20 минут при температуре -20°С;
 - центрифугирование 10 минут при 17 000g;
- после удаления надосадочной жидкости открытые пробирки инкубируются при 70°C 3-4 минуты;
- после внесения 15 мкл формамида инкубация с закрытой крышкой при 70°C 1 минуту.

Также очистка возможна с использованием коммерческих наборов в соответствии с инструкцией производителя.

5) Секвенирование фрагментов ГДХ

Электрофоретическое разделение продуктов реакции циклического секвенирования и распознавание последовательности ДНК проводится с помощью секвенатора в соответствии с инструкцией к прибору с использованием соответствующего программного обеспечения.

6) Определение аллелей ГДХ

При получении нуклеотидных последовательностей высокого качества прочтения (ошибки прочтения не более 5-10%) (рисунок 1) определяются аллели всех 7 генов путем сравнения с референтными последовательностями базы данных PubMLST https://pubmlst.org/neisseria/для ГДХ менингококков и https://pubmlst.org/spneumoniae/для ГДХ пневмококков (рисунок 2).

Рисунок 1 — Нуклеотидная последовательность высокого качества прочтения (BioEdit Sequence Alignment Editor)

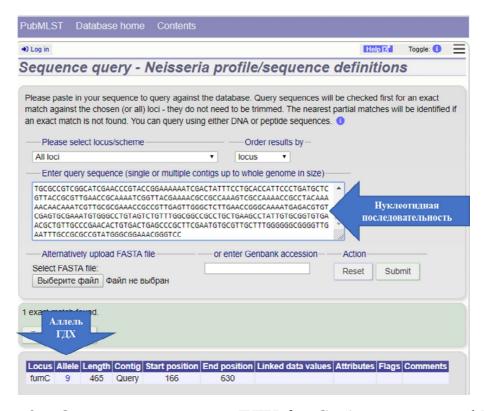


Рисунок 2 – Определение аллели ГДХ *fumС*в базе данных pubMLST

7) Определение сиквенс-типа

После установления аллелей каждого из 7 генов для определенного изолята, с использованием базы данных PubMLST (http://pubmlst.org/) определяется СТ (аллельный профиль), соответствующий определенной комбинации семи аллелей (рисунок 3). В случае отсутствия в базе определенных комбинаций аллелей, подается заявка на депонирование последовательностей ДНК нового СТ с выдачей номера нового СТ. С помощью алгоритма BURST (http://eburst.mlst.net/v3/mlst_datasets) определяется КК, который представляет собой группу взаимосвязанных СТ, берущих начало от общего предка. В базе данных риbMLST также возможно определить отношение установленного СТ к определенному КК (рисунок 3).

5. Заключение

К преимуществам MLST относятся возможность исследования биологического материала без необходимости получения жизнеспособной чистой культуры микроорганизма, анализ данных и сопоставление результатов независимо работающих лабораторий по всему миру через интернет. Данные секвенирования являются мощным инструментом работы эпидемиологов для мониторинга циркулирующих на конкретных пневмококков, территориях ТИПОВ менингококков И проведения скрининговых бактерионосителей, прогнозирования исследований

эффективности санации и вакцинации.

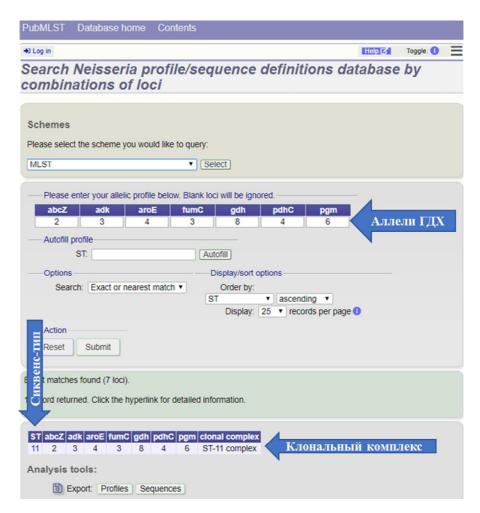


Рисунок 3 — Определение сиквенс-типа и клонального комплекса менингококка в базе данных pubMLST

Перечень возможных осложнений или ошибок при выполнении и пути их устранения

В таблице 8 представлены наиболее часто возникающие ошибки при применении метода, изложенного в настоящей инструкции, их возможные причины и пути устранения.

Таблица 8- Возможные ошибки или осложнения и пути их устранения

Возможная причина	Пути устранения	
Отсутствие специфических продуктов ПЦР-реакции		
Деградация или низкая концентрация ДНК	Повторное выделение ДНК методом,	
	обеспечивающим достаточный выход;	
	соблюдение сроков и условий хранения ДНК.	
Реагенты:	Исключить ошибки приготовления	
несоблюдение	реакционной смеси; использовать	
концентраций	качественные реагенты, соблюдать условия и	

компонентов реакции,	сроки хранения.
условий и сроков	
хранения	
Присутствие ингибиторов ПЦР	Выделение ДНК методом, обеспечивающим высокую степень очистки (выход ДНК более 90%); использование одноразовой стерильной пластиковой посуды и наконечников на всех страдиях работы.
Наличие нест	пецифических продуктов ПЦР-реакции
Использование ДНК, экстрагированной из клинических образцов	Предварительная детекция генов менингококка и/или пневмококка в образце.
Исследование ДНК возбудителей других видов	Предварительная детекция генов менингококка и/или пневмококка в образце.
Низкая концентрация ДНК	Увеличение объема вносимой ДНК.
Наличие специфич	еских продуктов в отрицательном контроле
Контаминация	Использование одноразовой стерильной пластиковой посуды и наконечников, халатов, одноразовых перчаток; химическая и УФ дезинфекция всех поверхностей рабочих зон.
Реакц	ия циклического секвенирования
Слабый сигнал	Увеличение объема вносимой ДНК.
Отсутствие сигнала	Проверка специфичности продукта и перевыделение ДНК из геля; качественная отмывка продукта реакции циклического секвенирования; увеличение объема вносимой ДНК.
Гетерогенный сигнал	Проверка специфичности продукта и перевыделение ДНК из геля; прочтение последовательности с обратного праймера (F/R).
Преждевременный обрыв сигнала	Прочтение последовательности с обратного праймера(F/R); увеличение температуры денатурации в реакции циклического секвенирования.
Наличие димеров пиков	Аккуратное вырезание фрагмента, содержащего основной продукт ПЦР; качественная отмывка продукта реакции циклического секвенирования.