МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ
Первый заместитель Министра
Д.Л. Пиневич
20.05.2016
Регистрационный № 020-0516

МЕТОД ЛАБОРАТОРНОЙ ДИАГНОСТИКИ ВИЧ-АССОЦИИРОВАННЫХ ИММУНОДЕФИЦИТНЫХ СОСТОЯНИЙ инструкция по применению

Учреждения-разработчики:

Учреждение образования «Белорусский государственный медицинский университет»;

Государственное учреждение «Республиканский научно-практический центр эпидемиологии и микробиологии».

Авторы: Павлов К. И., д. м. н., профессор Титов Л. П., к.м.н. Гончаров А. Е., к. б. н, Янович О. О., Зновец Т. В., д.м.н., профессор Жаворонок С.В.

В настоящей инструкции по применению (далее – инструкции) изложен метод исследования активности фермента-индуктора соматических гипермутаций генов иммуноглобулинов цитидиндезаминазы посредством индофенольной колориметрической реакции с использованием ИФА-анализатора и 96-луночных планшетов. Данный метод может использоваться в комплексе медицинских услуг, направленных на оказание медицинской помощи пациентам с ВИЧ-инфекцией.

Инструкция предназначена для врачей лабораторной диагностики учреждений здравоохранения, оказывающих помощь пациентам с ВИЧ-инфекцией.

Показание к применению:

- 1. В20 Болезнь, вызванная вирусом иммунодефицита человека (ВИЧ), проявляющаяся в виде инфекционных и паразитарных болезней.
- 2. В21 Болезнь, вызванная вирусом иммунодефицита человека (ВИЧ), проявляющаяся в виде злокачественных новообразований.
- 3. В22 Болезнь, вызванная вирусом иммунодефицита человека (ВИЧ), проявляющаяся в виде других уточненных болезней.
- 4. В23 Болезнь, вызванная вирусом иммунодефицита человека (ВИЧ), проявляющаяся в виде других состояний.

Противопоказания для применения

Отсутствуют.

Перечень необходимого медицинского оборудования

В таблице 1 представлен перечень необходимого оборудования:

Таблица 1 — Набор оборудования для проведения исследований методом индофенольной колориметрической реакции с использованием ИФА-анализатора

Наименование оборудования и основные характеристики	Коли- чество
Весы лабораторные для взвешивания реактивов массой от 100 мг до 500 г	1
Холодильник с диапазоном рабочих температур от +2 до +4 °C	1
Низкотемпературная морозильная камера (диапазон рабочих температур - 75 - 80 0 C)	1
Микроцентрифуга-вортекс	1
Комплект пипеточных дозаторов (20-200 мкл; 100-1000 мкл)	1
Микроцентрифуга-вортекс	1
Комплект пипеточных дозаторов (0,5-10 мкл, 5-50 мкл; 20-200 мкл)	1
Термостатирующий шкаф с температурным диапазоном +25-+80°C	1
Анализатор для проведения иммуноферментного анализа (ИФА- мультискан) с фильтром 630 нм	1

Реакция выполняется с помощью стандартного оснащения лаборатории: резиновые перчатки, наконечники для пипеток объемом 200, 1000 мкл, микроцентрифужные пробирки на 1,5 мл, штативы для пробирок, чистые иммунологические пластиковые плоскодонные планшеты на 96 лунок.

Получение материала для исследования

Для исследования необходимо 4 мл венозной крови с добавлением в качестве антикоагулянта гепарина в концентрации 0,2 мг/мл без признаков гемолиза. Образцы крови в течение 10 мин центрифугируют при 1500 g, отделяют образовавшуюся плазму и помещают ее в морозильник (температура -25°C). Допускается работа только при отсутствии гемолиза.

Депонирование образцов более 2-х недель перед исследованием не допускается.

Принцип метода

Реакция дезаминации катализируется цитидиндезаминазой и смещена в сторону образования аммиака. Останавливается реакция в конце инкубации путём добавления фенольно-нитропруссидного раствора. Аммиак в присутствии гипохлорита натрия и фенола в щелочном растворе при катализе нитропруссидом натрия образует индофенол, имеющий интенсивно синюю окраску. Для обнаружения активности цитидиндезаминазы необходима инкубация длительностью 22 часа.

- 1. Цитидин+H2O → инозин+NH3
- 2. NH3+OCl[→] NH2Cl+OH[−]

При этом, концентрация аммиака прямо пропорциональна оптическому поглощению индофенола. Оптимальная длина волны измерения оптической плотности раствора индофенола 630 нм.

Реагенты и растворы

Все реагенты должны относиться к категории ЧДА. Растворы должны быть приготовлены с использованием дистиллированной воды.

1. Фосфатно-солевой буфер (pH 7,4). Растворить 8,00 г NaCl, 0,20 г KCl, 1,44 г Na₂HPO₄, 0,24 г KH₂PO₄ в дистиллированной воде объемом 1000 мл.

- 2. Буферный раствор цитидина (цитидин 21 ммоль/л, натрийфосфатный буфер, рН 7,4). К 140 мг цитидина добавить 25 мл натрийфосфатного буфера.
- 3. Основной раствор сульфата аммония (15 ммоль/л). Растворить 200 мг безводного сульфата аммония в дистиллированной воде, довести объем до 100 мл и тщательно перемешать.
- 4. Стандартный раствор сульфата аммония (75 мкмоль/л). 0,5 мл основного раствора сульфата аммония доводят натрий-фосфатным буфером до объема 100 мл.
- 5. Фенольно-нитропруссидный раствор (фенол 106 ммоль/л, нитропруссид натрия 0,17 ммоль/л). 10 г фенола и 50 мг нитропруссида натрия растворяют в 1000 мл.
- 6. 1 M раствора NaOH (8 г сухого NaOH растворить в 200 мл дистиллированной воды.
- 7. Щелочной раствор гипохлорита натрия (NaOCl 11 ммоль/л, NaOH 125 ммоль/л). Смешивают 125 мл 1 М раствора NaOH и 16,4 мл раствора гипохлорита натрия, содержащего 5% NaOCl. Полученную смесь разводят дистиллированной водой до объема 1000 мл.

Приготовленных растворов достаточно для не менее 320 однократных исследований.

Буферный раствор цитидина стабилен неделю при температуре от 0 до 4 °C. Хранение не сопровождается выпадением осадка и помутнением. Остальные растворы сохраняют стабильность при температуре от 0 до 4 °C до 2-х месяцев.

Порядок выполнения исследования

Схема постановки реакции и объёмы реакционных смесей представлены в Таблице 2:

Таблица 2 – Схема постановки индофенольной колориметрической реакции и объёмы реакционных смесей

Вносимые реагенты	Контроль реагентов	Стандартный раствор сульфата аммония	Контроль Образца «Контроль»	Опытная проба «Опыт»	
Натрий -фосфатный буфер	200 мкл	-	-	-	
Буферный раствор цитидина	-	-	200 мкл	200 мкл	
Стандартный раствор	-	200 мкл	-	-	
Образец	-	-	-	20 мкл	
Дистиллированная вода	20 мкл				
Перемешать и инкубировать при 37 °C 22 часа					
Фенольно- нитропруссидный раствор	600 мкл	600 мкл	600 мкл	600 мкл	
Образец	-	-	20 мкл	-	
Щелочной раствор гипо- хлорита натрия	600 мкл	600 мкл	600 мкл	600 мкл	

Перемешать и инкубировать 40 минут при 37 °C после чего измерить светопоглощение растворов на спектрофотометре или ИФА-анализаторе

- 1. Раскапывают буферный раствор цитидина по 200 мкл на пробирку по 2 пробирки на каждый образец: «Опыт», «Контроль».
- 2. Добавляют в пробирку «Опыт» 20 мкл сыворотки и перимешивают пробирку на вортексе.

- 3. Ставят в инкубатор на 22 часа.
- 4. Одновременно с исследуемыми образцами, в течении 22-х часов инкубируют 10 пробирок с 200 мл стандартного раствора сульфата аммония и фосфатно-солевого буфера каждая для контроля реагентов и стандартного раствора.
- 5. После окончания инкубации в пробирки достают и добавляют 600 мкл фенольно-нитропруссидного раствора.
- 6. В пробирку «Контроль» добавляют 20 мкл исследуемой сыворотки.
- 7. Во все пробирки добавляют 600 мкл раствора гиппохлорита натрия.
- 8. Пробирки инкубируют 40 минут.

После окончания инкубации 300 мкл реакционной смеси из пробирки объёмом 1,5 мл переносится в 96-луночный планшет. Для 10 образцов контроля реагентов и стандартного раствора рассчитывается среднее значение и подставляется в формулу.

Расчетная методика. Для расчета активности фермента используется формула:

где А-значения оптической плотности исследуемых растворов; 150 мкмоль/л — количество молекулярного аммиака, содержащегося в стандарте сульфата аммония; 0,00002 объём образца в литрах; 1320 минут — время инкубации длинной 22 часа.

Снятие показателей оптической плотности исследуемых образцов осуществляется ИФА – анализатором при длине волны 630 нм.

Интерпретация результатов

Оценка показателей ферментативной активности и рекомендации представлены в Таблице 3:

Таблица 3 — Интерпретация результатов для ВИЧ-инфицированных пациентов

Значение	Обоснование	Рекомендации
ферментативной		
активности		
0 МЕ/л	Полное отсутствие фермен-	Нулевая активность цитидиндезаминазы
	тативной активности – ред-	в сыворотке крови является доклиниче-
	кое явление, характерное	ским маркёром иммунодефицита. В дан-
	именно для группы ВИЧ-	ной ситуации требуется:
	инфицированных пациентов.	1. Повышение частоты исследования
	Нулевое значение активно-	иммунного статуса
	сти цитидиндезаминазы яв-	2. Клинический контроль оппорту-
	ляется показателем иммуно-	нистических инфекций.
	дефицитного состояния, ко-	Соответствие МКБ 10:
	торое располагает к реплика-	D84.8 Другие уточненные иммунодефи-
	тивной активности ВИЧ.	цитные нарушения
0,01-1,50 МЕ/л	Данные значения фермента-	Стандартный клинико-лабораторный
	тивной активности для	подход к диагностике и лечению.
	большинства пациентов не	
	предрасполагают к повы-	
	шенной репликационной ак-	
	тивности ВИЧ.	
>1,50 МЕ/л	Повышение уровня фермен-	Повышенное значение активности (осо-
	тативной активности у ВИЧ-	бенно свыше 5 МЕ/л) является фактором
	инфицированных пациентов	риска активации инфекционного процес-
	может являться маркёром	са и оппортунистических инфекций. При
	активности инфекционного	выявлении требуется клинический мони-
	процесса.	торинг оппортунистических инфекций.

Перечень возможных ошибок, осложнений и пути их устранения

В Таблице 4 представлены возможные ошибки и осложнения, которые могут возникнуть при выполнении метода с описанием причин возникновения и путей их устранения.

Таблица 4 – Возможные ошибки или осложнения при выполнении метода и пути их устранения

Проблема	Возможная причина	Пути устранения
Высокая оптическая плотность контроля образца	Гемолиз	Использовать только образцы сыворотки с полным отсутствием гемолиза
	Кристаллический фенол низкого качества	Использовать только кристаллический фенол белого цвета
	Переизбыток катализатора нитропруссида натрия	Использовать только указанное количество нитропруссида натрия
Отрицательное значение разности «Опытная проба» и «Контроль образца»	Недостаточная инкубация сыворотки и субстрата	Использовать только длительную 22-х часовую инкубацию
	Низкая ферментативная активность	Избегать повторных циклов замораживания-оттаивания образца
	Деградация субстратного раствора	Использовать только свежеприготовленный раствор цитидина